Congruences for the coefficients of the Gordon and McIntosh mock theta function $$\xi (q)$$

نویسندگان

چکیده

Recently Gordon and McIntosh introduced the third order mock theta function $$\xi (q)$$ defined by $$\begin{aligned} \xi (q)=1+2\sum _{n=1}^{\infty }\frac{q^{6n^2-6n+1}}{(q;q^6)_{n}(q^5;q^6)_{n}}. \end{aligned}$$ Our goal in this paper is to study arithmetic properties of coefficients function. We present a number such properties, including several infinite families Ramanujan-like congruences.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Split $(n+t)$-Color Partitions and Gordon-McIntosh Eight Order Mock Theta Functions

In 2004, the first author gave the combinatorial interpretations of four mock theta functions of Srinivasa Ramanujan using n-color partitions which were introduced by himself and G.E. Andrews in 1987. In this paper we introduce a new class of partitions and call them “split (n+t)-color partitions”. These new partitions generalize Agarwal–Andrews (n + t)-color partitions. We use these new combin...

متن کامل

Effective Congruences for Mock Theta Functions

LetM(q) = ∑ c(n)q be one of Ramanujan’s mock theta functions. We establish the existence of infinitely many linear congruences of the form:

متن کامل

THE f(q) MOCK THETA FUNCTION CONJECTURE AND PARTITION RANKS

In 1944, Freeman Dyson initiated the study of ranks of integer partitions. Here we solve the classical problem of obtaining formulas for Ne(n) (resp. No(n)), the number of partitions of n with even (resp. odd) rank. Thanks to Rademacher’s celebrated formula for the partition function, this problem is equivalent to that of obtaining a formula for the coefficients of the mock theta function f(q),...

متن کامل

Duality involving the mock theta function f(q)

We show that the coefficients of Ramanujan’s mock theta function f(q) are the first non-trivial coefficients of a canonical sequence of modular forms. This fact follows from a duality which equates coefficients of the holomorphic projections of certain weight 1/2 Maass forms with coefficients of certain weight 3/2 modular forms. This work depends on the theory of Poincaré series, and a modifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ramanujan Journal

سال: 2021

ISSN: ['1572-9303', '1382-4090']

DOI: https://doi.org/10.1007/s11139-021-00479-8